How to design the different stages of a multi stage distortion / preamp Pedal ?

Started by Vivek, October 02, 2020, 06:29:52 AM

Previous topic - Next topic

Vivek

I request your guidance on design of the different stages of a multi stage distortion / preamp Pedal ?

Any hints on range of how much of duty cycle should be chopped at fist stage and how much at next stage ?

Does this make sense :

First Stage :
Bass cut before entering this stage
slight clipping

Second stage
No need for bass cut since it has already been cut
cut the treble before entering this stage
More drastic clipping at this stage ?
Cut the treble again upon exit from this stage

Anyone has graphs ? Simulations ?

Thanks



Vivek

I made an LT SPICE file to try and analyse the Pete Cornish Crunch CC-1 as traced by AION.

I can offer the LT SPICE file to anyone who is interested, but I dont know how to attach files here.

It has 2 gain stages

Each has a huge compliance resistor in series with the diodes.

I will post my analyses of the CC-1 soon.

Steben

Quote from: Vivek on October 02, 2020, 06:32:33 AM
I made an LT SPICE file to try and analyse the Pete Cornish Crunch CC-1 as traced by AION.

I can offer the LT SPICE file to anyone who is interested, but I dont know how to attach files here.

It has 2 gain stages

Each has a huge compliance resistor in series with the diodes.

I will post my analyses of the CC-1 soon.

you can click on the blue "add image to post" underneath the text box if you want to download directly from pc
  • SUPPORTER
Rules apply only for those who are not allowed to break them

Vivek

Thanks

So no way to attach the *.asc files except post them as text ?


Version 4
SHEET 1 2316 996
WIRE -288 -432 -288 -480
WIRE -288 -288 -288 -352
WIRE -288 -64 -288 -112
WIRE -1152 80 -1168 80
WIRE -544 80 -768 80
WIRE -416 80 -544 80
WIRE -288 80 -288 16
WIRE -288 80 -352 80
WIRE -192 80 -288 80
WIRE 112 80 -112 80
WIRE 256 96 176 96
WIRE 432 96 256 96
WIRE 496 96 480 96
WIRE 544 96 496 96
WIRE 768 96 624 96
WIRE 976 96 768 96
WIRE 1120 96 976 96
WIRE 1360 96 1200 96
WIRE 1664 96 1360 96
WIRE 2000 96 1728 96
WIRE -1168 112 -1168 80
WIRE -544 112 -544 80
WIRE 112 112 48 112
WIRE 768 160 768 96
WIRE 768 160 688 160
WIRE 848 160 768 160
WIRE 1360 160 1360 96
WIRE 1520 160 1360 160
WIRE -1168 224 -1168 192
WIRE -544 224 -544 192
WIRE 688 224 688 160
WIRE 848 224 848 160
WIRE 1360 224 1360 160
WIRE 1520 224 1520 160
WIRE 976 240 976 96
WIRE 48 272 48 112
WIRE 112 272 48 272
WIRE 256 272 256 96
WIRE 256 272 176 272
WIRE -464 336 -544 336
WIRE -320 336 -384 336
WIRE -240 336 -320 336
WIRE -80 336 -160 336
WIRE 48 336 48 272
WIRE 48 336 -80 336
WIRE 1520 336 1520 288
WIRE 688 352 688 288
WIRE 848 352 848 288
WIRE 1360 368 1360 288
WIRE -544 400 -544 336
WIRE -320 400 -320 336
WIRE 48 400 48 336
WIRE 112 400 48 400
WIRE 256 400 256 272
WIRE 256 400 176 400
WIRE 976 496 976 304
WIRE -544 528 -544 464
WIRE -320 528 -320 464
WIRE 48 528 48 400
WIRE 112 528 48 528
WIRE 256 528 256 400
WIRE 256 528 176 528
WIRE 48 592 48 528
WIRE 976 688 976 576
WIRE 48 736 48 672
WIRE 112 736 48 736
WIRE 256 736 256 528
WIRE 256 736 192 736
WIRE -80 928 -80 336
WIRE 800 928 -80 928
WIRE 976 928 976 768
WIRE 976 928 880 928
WIRE 1360 928 1360 448
WIRE 1360 928 976 928
FLAG -320 528 0
FLAG -544 528 0
FLAG -288 -112 VB
FLAG -544 224 0
FLAG 688 352 0
FLAG 848 352 0
FLAG 1520 336 0
FLAG 2000 96 Output1
IOPIN 2000 96 Out
FLAG -288 -288 0
FLAG -288 -480 VB
FLAG -1152 80 Input
IOPIN -1152 80 Out
FLAG -1168 224 0
FLAG 256 96 OutputOpamp
FLAG 768 96 Afterhardclip
FLAG -768 80 Input
IOPIN -768 80 In
SYMBOL Opamps\\opamp 144 160 M180
WINDOW 0 -4 95 Left 2
SYMATTR InstName U1
SYMBOL cap 176 256 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C2
SYMATTR Value 100p
SYMBOL LED 112 416 R270
WINDOW 0 32 32 VTop 2
WINDOW 3 0 32 VBottom 2
SYMATTR InstName D2
SYMATTR Value NSPW500BS
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 176 512 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName D3
SYMATTR Value NSPW500BS
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL res 32 576 R0
SYMATTR InstName R4
SYMATTR Value 3K
SYMBOL res 208 720 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName Drive
SYMATTR Value {drive}
SYMBOL res -256 352 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 0 56 VBottom 2
SYMATTR InstName R5
SYMATTR Value 1K
SYMBOL res -480 352 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 0 56 VBottom 2
SYMATTR InstName R6
SYMATTR Value 5k6
SYMBOL cap -336 400 R0
SYMATTR InstName C3
SYMATTR Value 220nF
SYMBOL cap -560 400 R0
SYMATTR InstName C4
SYMATTR Value 22µF
SYMBOL res -96 64 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R2
SYMATTR Value 6k8
SYMBOL res -304 -80 R0
SYMATTR InstName R3
SYMATTR Value 360K
SYMBOL cap -352 64 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C1
SYMATTR Value 4n7
SYMBOL res -560 96 R0
SYMATTR InstName R1
SYMATTR Value 1Megs
SYMBOL cap 496 80 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C5
SYMATTR Value 1µ
SYMBOL res 640 80 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R7
SYMATTR Value 2k
SYMBOL diode 672 224 R0
SYMATTR InstName D4
SYMBOL diode 864 288 R180
WINDOW 0 24 64 Left 2
WINDOW 3 24 0 Left 2
SYMATTR InstName D5
SYMBOL cap 960 240 R0
SYMATTR InstName C7
SYMATTR Value 22n
SYMBOL res 960 480 R0
WINDOW 3 40 70 Left 2
SYMATTR InstName Focus
SYMATTR Value {focus}
SYMBOL res 960 672 R0
SYMATTR InstName R8
SYMATTR Value 15k
SYMBOL res 1104 112 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 0 56 VBottom 2
SYMATTR InstName R9
SYMATTR Value 10K
SYMBOL cap 1504 224 R0
SYMATTR InstName C9
SYMATTR Value 22n
SYMBOL cap 1344 224 R0
SYMATTR InstName C8
SYMATTR Value 4n7
SYMBOL res 1344 352 R0
SYMATTR InstName R10
SYMATTR Value 150k
SYMBOL voltage -288 -448 R0
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
SYMATTR InstName VB
SYMATTR Value 4.5
SYMBOL voltage -1168 96 R0
WINDOW 123 24 132 Left 2
WINDOW 3 50 51 Left 2
WINDOW 39 0 0 Left 0
SYMATTR Value2 AC 300mv
SYMATTR Value SINE(0 {ampl} {freq})
SYMATTR InstName V2
SYMBOL res 784 944 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 0 56 VBottom 2
SYMATTR InstName R999
SYMATTR Value 10
SYMBOL cap 1728 80 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C10
SYMATTR Value 22n
TEXT 72 176 Left 2 !.lib opamp.sub
TEXT 992 616 Left 2 !.param focus 50k
TEXT 1000 488 Left 2 ;Focus is 50K B taper
TEXT 0 840 Left 2 ;Drive is 500K
TEXT 8 880 Left 2 !.param drive 200k
TEXT 184 -96 Left 2 !.tran 0 50ms 0 50n
TEXT 176 -144 Left 2 !;ac oct 10 20 20000
TEXT 992 592 Left 2 !; .step param focus list 1  25k 50k
TEXT -1472 344 Left 2 !.param freq=1000
TEXT -1472 384 Left 2 !;.step param freq list 500 2000 4000
TEXT 536 680 Left 2 !.options numdgt=7
TEXT 536 720 Left 2 !.options plotwinsize=0
TEXT -1472 424 Left 2 !; .step param ampl list  3mv 10mv 15mv 20mv 40mv 80mv 160mv 300mv
TEXT -1472 312 Left 2 !.param ampl 0.18v
TEXT 16 -400 Left 2 ;MAD PROFESSOR SWEET HONEY OVERDRIVE\n \nhttps://pcbguitarmania.com/wp-content/uploads/2018/11/Mad-Honey-Building-Docs.pdf\nhttp://revolutiondeux.blogspot.com/2010/06/mad-professor-sweet-honey-overdrive.html


Steben

Quote from: Vivek on October 02, 2020, 06:29:52 AM
I request your guidance on design of the different stages of a multi stage distortion / preamp Pedal ?

Any hints on range of how much of duty cycle should be chopped at fist stage and how much at next stage ?

Does this make sense :

First Stage :
Bass cut before entering this stage
slight clipping

Second stage
No need for bass cut since it has already been cut
cut the treble before entering this stage
More drastic clipping at this stage ?
Cut the treble again upon exit from this stage

Anyone has graphs ? Simulations ?

Thanks

I'ld add two elements:
- cascaded high gain: the total of following cap coupled gain stages makes for bias shifting if the clipping of the stages is assymetric. This gives a classic multistage tube preamp sound
- keep cutting bass and very high end before each clipping stage
  • SUPPORTER
Rules apply only for those who are not allowed to break them

Vivek

Quote from: Steben on October 03, 2020, 03:11:16 AM


I'ld add two elements:
- cascaded high gain: the total of following cap coupled gain stages makes for bias shifting if the clipping of the stages is assymetric. This gives a classic multistage tube preamp sound
- keep cutting bass and very high end before each clipping stage

Thanks !!!

Please help me to understand

A) Are there time constants involved with the bias shift on the coupling capacitors following asymmetrical clipping? do you have an idea of the normal range of these time constants ?
are they in the range of few cycles
or part of a note
or after many notes (somewhat like a sag)

B) Suppose clipping does not create subharmonics (No intermodulation products) and we already cut bass before first clipping stage, is there a need to cut more bass before 2nd and 3rd clipping stages ?




Vivek

Is there logic to the general wisdom of

slight clipping stage first, harder clipping stages later on

bluebunny

Quote from: Vivek on October 03, 2020, 03:10:52 AM
So no way to attach the *.asc files except post them as text ?

Use the [code] tag (the # button).  Then we don't have to scroll through yards of code.  Like this:

Version 4
SHEET 1 2316 996
WIRE -288 -432 -288 -480
WIRE -288 -288 -288 -352
WIRE -288 -64 -288 -112
WIRE -1152 80 -1168 80
WIRE -544 80 -768 80
WIRE -416 80 -544 80
WIRE -288 80 -288 16
WIRE -288 80 -352 80
WIRE -192 80 -288 80
WIRE 112 80 -112 80
WIRE 256 96 176 96
WIRE 432 96 256 96
WIRE 496 96 480 96
WIRE 544 96 496 96
WIRE 768 96 624 96
WIRE 976 96 768 96
WIRE 1120 96 976 96
WIRE 1360 96 1200 96
WIRE 1664 96 1360 96
WIRE 2000 96 1728 96
WIRE -1168 112 -1168 80
WIRE -544 112 -544 80
WIRE 112 112 48 112
WIRE 768 160 768 96
WIRE 768 160 688 160
WIRE 848 160 768 160
WIRE 1360 160 1360 96
WIRE 1520 160 1360 160
WIRE -1168 224 -1168 192
WIRE -544 224 -544 192
WIRE 688 224 688 160
WIRE 848 224 848 160
WIRE 1360 224 1360 160
WIRE 1520 224 1520 160
WIRE 976 240 976 96
WIRE 48 272 48 112
WIRE 112 272 48 272
WIRE 256 272 256 96
WIRE 256 272 176 272
WIRE -464 336 -544 336
WIRE -320 336 -384 336
WIRE -240 336 -320 336
WIRE -80 336 -160 336
WIRE 48 336 48 272
WIRE 48 336 -80 336
WIRE 1520 336 1520 288
WIRE 688 352 688 288
WIRE 848 352 848 288
WIRE 1360 368 1360 288
WIRE -544 400 -544 336
WIRE -320 400 -320 336
WIRE 48 400 48 336
WIRE 112 400 48 400
WIRE 256 400 256 272
WIRE 256 400 176 400
WIRE 976 496 976 304
WIRE -544 528 -544 464
WIRE -320 528 -320 464
WIRE 48 528 48 400
WIRE 112 528 48 528
WIRE 256 528 256 400
WIRE 256 528 176 528
WIRE 48 592 48 528
WIRE 976 688 976 576
WIRE 48 736 48 672
WIRE 112 736 48 736
WIRE 256 736 256 528
WIRE 256 736 192 736
WIRE -80 928 -80 336
WIRE 800 928 -80 928
WIRE 976 928 976 768
WIRE 976 928 880 928
WIRE 1360 928 1360 448
WIRE 1360 928 976 928
FLAG -320 528 0
FLAG -544 528 0
FLAG -288 -112 VB
FLAG -544 224 0
FLAG 688 352 0
FLAG 848 352 0
FLAG 1520 336 0
FLAG 2000 96 Output1
IOPIN 2000 96 Out
FLAG -288 -288 0
FLAG -288 -480 VB
FLAG -1152 80 Input
IOPIN -1152 80 Out
FLAG -1168 224 0
FLAG 256 96 OutputOpamp
FLAG 768 96 Afterhardclip
FLAG -768 80 Input
IOPIN -768 80 In
SYMBOL Opamps\\opamp 144 160 M180
WINDOW 0 -4 95 Left 2
SYMATTR InstName U1
SYMBOL cap 176 256 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C2
SYMATTR Value 100p
SYMBOL LED 112 416 R270
WINDOW 0 32 32 VTop 2
WINDOW 3 0 32 VBottom 2
SYMATTR InstName D2
SYMATTR Value NSPW500BS
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL LED 176 512 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName D3
SYMATTR Value NSPW500BS
SYMATTR Description Diode
SYMATTR Type diode
SYMBOL res 32 576 R0
SYMATTR InstName R4
SYMATTR Value 3K
SYMBOL res 208 720 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName Drive
SYMATTR Value {drive}
SYMBOL res -256 352 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 0 56 VBottom 2
SYMATTR InstName R5
SYMATTR Value 1K
SYMBOL res -480 352 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 0 56 VBottom 2
SYMATTR InstName R6
SYMATTR Value 5k6
SYMBOL cap -336 400 R0
SYMATTR InstName C3
SYMATTR Value 220nF
SYMBOL cap -560 400 R0
SYMATTR InstName C4
SYMATTR Value 22µF
SYMBOL res -96 64 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R2
SYMATTR Value 6k8
SYMBOL res -304 -80 R0
SYMATTR InstName R3
SYMATTR Value 360K
SYMBOL cap -352 64 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C1
SYMATTR Value 4n7
SYMBOL res -560 96 R0
SYMATTR InstName R1
SYMATTR Value 1Megs
SYMBOL cap 496 80 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C5
SYMATTR Value 1µ
SYMBOL res 640 80 R90
WINDOW 0 0 56 VBottom 2
WINDOW 3 32 56 VTop 2
SYMATTR InstName R7
SYMATTR Value 2k
SYMBOL diode 672 224 R0
SYMATTR InstName D4
SYMBOL diode 864 288 R180
WINDOW 0 24 64 Left 2
WINDOW 3 24 0 Left 2
SYMATTR InstName D5
SYMBOL cap 960 240 R0
SYMATTR InstName C7
SYMATTR Value 22n
SYMBOL res 960 480 R0
WINDOW 3 40 70 Left 2
SYMATTR InstName Focus
SYMATTR Value {focus}
SYMBOL res 960 672 R0
SYMATTR InstName R8
SYMATTR Value 15k
SYMBOL res 1104 112 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 0 56 VBottom 2
SYMATTR InstName R9
SYMATTR Value 10K
SYMBOL cap 1504 224 R0
SYMATTR InstName C9
SYMATTR Value 22n
SYMBOL cap 1344 224 R0
SYMATTR InstName C8
SYMATTR Value 4n7
SYMBOL res 1344 352 R0
SYMATTR InstName R10
SYMATTR Value 150k
SYMBOL voltage -288 -448 R0
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
SYMATTR InstName VB
SYMATTR Value 4.5
SYMBOL voltage -1168 96 R0
WINDOW 123 24 132 Left 2
WINDOW 3 50 51 Left 2
WINDOW 39 0 0 Left 0
SYMATTR Value2 AC 300mv
SYMATTR Value SINE(0 {ampl} {freq})
SYMATTR InstName V2
SYMBOL res 784 944 R270
WINDOW 0 32 56 VTop 2
WINDOW 3 0 56 VBottom 2
SYMATTR InstName R999
SYMATTR Value 10
SYMBOL cap 1728 80 R90
WINDOW 0 0 32 VBottom 2
WINDOW 3 32 32 VTop 2
SYMATTR InstName C10
SYMATTR Value 22n
TEXT 72 176 Left 2 !.lib opamp.sub
TEXT 992 616 Left 2 !.param focus 50k
TEXT 1000 488 Left 2 ;Focus is 50K B taper
TEXT 0 840 Left 2 ;Drive is 500K
TEXT 8 880 Left 2 !.param drive 200k
TEXT 184 -96 Left 2 !.tran 0 50ms 0 50n
TEXT 176 -144 Left 2 !;ac oct 10 20 20000
TEXT 992 592 Left 2 !; .step param focus list 1  25k 50k
TEXT -1472 344 Left 2 !.param freq=1000
TEXT -1472 384 Left 2 !;.step param freq list 500 2000 4000
TEXT 536 680 Left 2 !.options numdgt=7
TEXT 536 720 Left 2 !.options plotwinsize=0
TEXT -1472 424 Left 2 !; .step param ampl list  3mv 10mv 15mv 20mv 40mv 80mv 160mv 300mv
TEXT -1472 312 Left 2 !.param ampl 0.18v
TEXT 16 -400 Left 2 ;MAD PROFESSOR SWEET HONEY OVERDRIVE\n \nhttps://pcbguitarmania.com/wp-content/uploads/2018/11/Mad-Honey-Building-Docs.pdf\nhttp://revolutiondeux.blogspot.com/2010/06/mad-professor-sweet-honey-overdrive.html
  • SUPPORTER
Ohm's Law - much like Coles Law, but with less cabbage...

Vivek


Steben

Quote from: Vivek on October 03, 2020, 03:44:53 AM
Is there logic to the general wisdom of

slight clipping stage first, harder clipping stages later on

A VOX AC30 or Marshall 18W is the opposite: power amp is non feedback cathode bias with very gradual clipping, the preamp triode stages clip harder.
Just as some like a distortion or fuzz in front of an overdrive pedal.
  • SUPPORTER
Rules apply only for those who are not allowed to break them

PRR

Quote from: Vivek on October 03, 2020, 03:43:03 AMA) Are there time constants involved with the bias shift on the coupling capacitors following asymmetrical clipping? do you have an idea of the normal range of these time constants ?
are they in the range of few cycles or part of a note  or after many notes (somewhat like a sag)
B) Suppose clipping does not create subharmonics (No intermodulation products) and we already cut bass before first clipping stage, is there a need to cut more bass before 2nd and 3rd clipping stages ?

Not cheap yet worth the price if you insist on asking such questions:

Guitar Amplifier Overdrive by Ulrich Neumann, Malcolm Irving

I have just noticed that Neumann published a similar but cuter-covered book this summer:
Guitar Amplifier Design: Tubes and Semiconductors Play Together

  • SUPPORTER

LightSoundGeometry

Quote from: PRR on October 03, 2020, 06:07:02 PM
Quote from: Vivek on October 03, 2020, 03:43:03 AMA) Are there time constants involved with the bias shift on the coupling capacitors following asymmetrical clipping? do you have an idea of the normal range of these time constants ?
are they in the range of few cycles or part of a note  or after many notes (somewhat like a sag)
B) Suppose clipping does not create subharmonics (No intermodulation products) and we already cut bass before first clipping stage, is there a need to cut more bass before 2nd and 3rd clipping stages ?

Not cheap yet worth the price if you insist on asking such questions:

Guitar Amplifier Overdrive by Ulrich Neumann, Malcolm Irving

I have just noticed that Neumann published a similar but cuter-covered book this summer:
Guitar Amplifier Design: Tubes and Semiconductors Play Together



Paul, those books i was looking for ..they are like 100+ used all over the nets; I looked on the sites you gave me and found nothing in a book similar for under 100 used. a book similar to the one we used in school will go for 100-200 easily if it can be found. what i mean by that is the step by step examples of everything from the outer shell of an atom to digital I. it was so thorough in detail. I might have to shoot the old professor a email and see if can tell me the publisher ( or the book store on campus)

I still have  lot of my notes ..i have a lot on logic gates and Boolean algebra lol ..all looks chinese and greek to me now  ;D